Article Index

Pharmacists’ Influence on Immunization in Cancer Patients: Increasing Vaccination Rates and Reducing Mortality from Preventable Diseases

Heidi D. Finnes, PharmD BCOP
Member of HOPA’s Quality Oversight Committee
Senior Manager, Pharmacy Cancer Research
Assistant Professor of Pharmacy
Mayo Clinic Cancer Center
Rochester, MN

Immunizations prevent approximately 2–3 million deaths each year and have proven to be a safe and cost effective use of healthcare dollars.1 Measured in light of the federal government’s Healthy People 2020 goals, vaccination rates among adults and children are still substandard.2 As trusted and accessible members of the healthcare profession, pharmacists play a key role in heightening patients’ participation in immunizations.3 A meta-analysis by Isenor and colleagues found that patient vaccination rates increased when pharmacists were involved in the immunization process in any capacity: as patient educators, as facilitators of others in the delivery of vaccines to patients, and as administrators of vaccines in the pharmacy.4 Every state in the United States now allows for pharmacist-provided immunization in some capacity.5 The types of vaccinations allowed and the age of patients that pharmacists can vaccinate differ based on state regulations. HOPA’s Quality Oversight Committee, of which I am a member, would like to highlight some successes and potential areas of development for hematology/oncology pharmacists in meeting this essential quality metric for patients with cancer.

Influenza Vaccination

Less than 50% of patients undergoing cancer treatment receive the recommended seasonal influenza vaccine.6 Studies have shown varying results in patients’ ability to mount serologic responses to influenza vaccinations while they are receiving chemotherapy. A recent population-based study of more than 26,000 Canadian patients with cancer who underwent influenza testing found the influenza vaccine to be effective.7 Immunization was associated with reduced hospitalization in patients with laboratory-confirmed influenza. Vaccine effectiveness was higher in patients with solid-tumor versus hematologic malignancies (25% vs. 8%, p = .015). No difference was found in influenza vaccine efficacy in patients receiving chemotherapy versus those who were not receiving therapy (14% vs. 22%, p = .38).7 Because this trial increased the evidence of influenza vaccine effectiveness in patients with cancer, it is important to identify opportunities to improve vaccination rates. A quality improvement project at Massachusetts General Hospital Cancer Center sought to better a 40% influenza vaccination rate in patients receiving parenteral antineoplastic therapy in its clinic.8 During a 1-month period, with the oversight of board-certified oncology pharmacists, pharmacy students reviewed the immunization history of 617 patients who were receiving parenteral chemotherapy. One hundred twenty-four patients were interviewed to verify their influenza vaccination status, and 33 patients received the vaccine. With the effort of pharmacists-in-training, influenza vaccination rates at Massachusetts General Hospital Cancer Center increased to 60.5%.8

Post-Hematopoietic Cell Transplant Revaccination

Hematopoietic cell transplant (HCT) patients 6–24 months post-transplant should be immunized against pathogens such as pneumococcus, Haemophilus influenza, Herpes zoster, meningococcus, hepatitis A and B, diphtheria/tetanus toxoids and acellular pertussis, polio, and measles-mumps-rubella.9 Hematology/oncology pharmacists play a critical role in ensuring that appropriate vaccination schedules are maintained, with consideration of clinical factors such as active graft-versus-host disease, use of immunosuppressive therapies, and recent administration of chemotherapy or B-cell-depleting treatments.10 A pharmacist-directed quality improvement pilot project to standardize the timing of HCT vaccinations post-transplant was conducted at Saint Luke’s Mountain States Tumor Institute in Boise, ID. Over a 4-month period, a total of 12 patients were given 64 post-transplant vaccinations by an immunization-certified pharmacist. Providers expressed satisfaction with the pharmacy service, and patients experienced shorter wait times and an overall improvement in care. Pharmacists’ involvement in this vaccination clinic also decreased potential immunization errors and omissions for HCT patients.11

Human Papillomavirus (HPV) Vaccination

HPV is a sexually transmitted infection that results in approximately 44,000 new cases of HPV-associated cancers (cervical, oropharyngeal, and penile cancers) each year.12 Common types of HPV (strains 16 and 18) can be prevented with immunization prior to sexual activity. The Advisory Committee on Immunization Practices recommends that the three-dose HPV vaccination series be routinely recommended at age 11 or 12 years.13 Data from the 2018 National Immunization Survey—Teen, a report on more than 18,000 adolescents, showed that only 50% of youth have received the HPV vaccine series. Sixty-eight percent of adolescents received one or more HPV vaccine doses.14 These survey numbers are well below the Healthy People 2020 goal of 80% HPV vaccination for teens.2 Pharmacist-led vaccine clinics are an innovative way to increase HPV immunization and reduce the incidence of HPV-associated cancers. Many states, however, allow pharmacists’ administration of HPV vaccines only in adult women ages 18 or older. Some states require a physician-specific collaborative practice agreement with the pharmacist, or an HPV vaccine prescription, in order for patients to be vaccinated.15 Although laws about HPV administration currently vary among states, survey results show that 79% of physicians and 81% of parents approve of pharmacist-guided HPV vaccinations.16 A pilot of pharmacy-located HPV vaccination clinics was recently conducted at pharmacies in North Carolina, Michigan, Iowa, Kentucky, and Oregon. Barriers to expansion of this pharmacy vaccination program included third-party billing reimbursement practices and clinics’ limited affiliation with primary care and specialty clinics (and therefore a decrease in the number of referrals for vaccination).17 Opportunity exists for hematology/oncology pharmacists to increase legislators’ and the public’s awareness of pharmacist-provided HPV vaccination services for this preventable disease.


Nationally, vaccination rates continue to be a high-priority quality metric among multiple stakeholders, including public health, payer, and medical organizations. Improvements in these metrics are dependent on changes at local practice sites and organizations led by individuals who are responsible for clinical operations and are providing direct care for patients. Pharmacists and pharmacists-in-training are in a prime position to make a substantial impact in these metrics at local practices and organizations. By receiving appropriate vaccination training, augmenting documentation of vaccine doses in the electronic health record, and collaborating with local providers and clinics, pharmacists can contribute significantly to thwarting preventable infections and cancers.


  1. World Health Organization (WHO). Immunization. Available at Accessed December 2, 2019.
  2. Centers for Disease Control and Prevention. Division for Heart Disease and Stroke Prevention. Healthy People 2020. Washington, DC. Available at Accessed December 2, 2019.
  3. American Society of Health-System Pharmacists Council on Professional Affairs. ASHP guidelines on the pharmacist’s role in immunization. Am J Health Syst Pharm. 2003;60:1371-1377.
  4. Isenor JE, Edwards NT, Alia TA, et al. Impact of pharmacists as immunizers on vaccination rates: a systematic review and meta-analysis. Vaccine. 2016;34:5708-5723.
  5. Immunization Action Coalition. State Information. States Authorizing Pharmacists to Vaccinate. Available at Accessed December 2, 2019.
  6. Loulergue P, Mir O, Alexandre J, et al. Low influenza vaccination rate among patients receiving chemotherapy for cancer. Ann Oncol. 2008;19:1658.
  7. Blanchette PS, Chung H, Pritchard KI, et al. Influenza vaccine effectiveness among patients with cancer: a population-based study using health administrative and laboratory testing data from Ontario, Canada. J Clin Oncol. 2019;37:2795-2804.
  8. Kim EB, Zangardi M, Rostamnjad L, et al. Impact of a student pharmacist-directed pilot intervention on influenza vaccination documentation and administration rates in older adults receiving parenteral anticancer therapy. J Clin Oncol. 2019;37(27_suppl):abstract 71.
  9. Centers for Disease Control and Prevention. Vaccine Recommendations and Guidelines of the ACIP [Advisory Committee on Immunization Practices]. Available at Accessed December 2, 2019.
  10. Clemmons AB, Alexander M, DeGregory K, et al. The hematopoietic cell transplant pharmacist: roles, responsibilities, and recommendations from the ASBMT Pharmacy Special Interest Group. Biol Blood Marrow Transplant. 2018;24:914-922.
  11. Pence S, Mancini R. Pharmacist-run vaccination and medication management service for patients after bone marrow transplant. J Hematol Oncol Pharm. 2015;5:8-11.
  12. Centers for Disease Control and Prevention. HPV and Cancer. Available at Accessed December 2, 2019.
  13. Meites E, Szilagyi PG, Chesson HW, et al. Human papillomavirus vaccination for adults: updated recommendations of the Advisory Committee on Immunization Practices. MMWR Morb Mortal Wkly Rep. 2019;68:698-702.
  14. Walker TY, Elam-Evans LD, Yankey D, et al. National, regional, state, and selected local area vaccination coverage among adolescents aged 13-17 years—United States, 2018. MMWR Morb Mortal Wkly Rep. 2019;68:718-723.
  15. Brewer NT, Chung JK, Baker HM, et al. Pharmacist authority to provide HPV vaccine: novel partners in cervical cancer prevention. Gynecol Oncol. 2014;132:S3-8.
  16. Shah PD, Calo WA, Marciniak MW, et al. Support for pharmacist-provided HPV vaccination: national surveys of US physicians and parents. Cancer Epidemiol Biomarkers Prev. 2018;27:970-978.
  17. Calo WA, Shah PD, Gilkey MB, et al. Implementing pharmacy-located HPV vaccination: findings from pilot projects in five U.S. states. Hum Vaccin Immunother. 2019;15:1831-1838.